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Dear Editor, 
Toxicological risk assessment (RA) is a systematic, 
scientific evaluation of the likelihood of harm resulting 
from exposure to an entity (physical, chemical or biological 
etc.), considering both hazard and exposure information. 
Traditionally, risk assessment has been based on single-
stressor models, assessing the impact of individual chemicals 
in isolation. However, with rapid advancements in technology 
and industrial demand, the field is growing at a faster pace 
than expected1. The integration of real-life risk simulation 
(RLRS), multi-stressor approaches, and dynamic exposure 
modelling is transforming traditional risk assessment 
methods, enhancing their ability to reflect complex real-
world conditions. Nonetheless, adopting artificial intelligence 
(AI) is essential for precise and adaptive decision-making 
in risk assessment (RA)2. The growth in data science and 
artificial intelligence (AI), especially large language models 
(LLMs), accelerates the process of risk assessment, with AI-
powered regulatory assistance becoming a reality soon. 

With innovation speeding up in the post-COVID AI 
era, the pressure to shorten turnaround times for market 
authorization of new substances, drugs and products has 
reached a historic high. AI-driven approaches, including 
machine learning algorithms, predictive modeling, and big 
data analytics, are being employed already to enhance the 
precision and efficiency of risk assessment3. The integration 
of AI in toxicology is inevitable, and the focus should not 
be on resisting it but on optimizing its incorporation into 
existing processes. One increasingly accepted AI-driven 
approach in the toxicology community is Quantitative 
Structure-Activity Relationship (QSAR) modeling. This 
technique utilizes methods like regression, random 
forests, and support vector machines to correlate chemical 

descriptors with toxicity endpoints, helping predict potential 
hazards more efficiently4.

Large Language Models (LLMs) can transform 
toxicological risk assessment (RA) by improving data 
curation, uncertainty characterization, and evidence 
integration for regulatory compliance. With their advanced 
natural language processing (NLP) capabilities, LLMs can 
efficiently process large and complex datasets. By training 
them on publicly available repositories such as PubChem, 
ChEMBL, ACToR, and Tox21/ToxCast, the models can be 
fine-tuned to better extract and analyze chemical data. In 
addition, predictive toxicology models like the DeepTox 
have demonstrated significant augmentation in the process 
of risk characterization in recent times. Interestingly, the 
European Food Safety Authority (EFSA) has investigated 
the potential of LLMs in toxicology within the AI4NAMS 
project by evaluating their performance in handling data on 
Bisphenol A (BPA). The study benchmarked the performance 
of a baseline Generative Pre-trained Transformer (GPT) 
model against a fine-tuned model, with the latter proving 
to be more effective in extracting and consolidating relevant 
toxicological data5.

To date, LLMs have achieved even higher performance 
efficiency beyond mere automation to the extent of 
successfully completing tasks like extracting, structuring, 
and summarizing scientific information. The AI4NAMS 
project led by EFSA explored the application of GPT-based 
LLMs for risk assessment acceleration by operating on 
unstructured scientific literature. A fine-tuned Curie (GPT-3) 
was compared with out-of-the-box models (text-davinci-002 
and text-davinci-003) wherein the fine-tuned model was 
found to be far more competent due to the fine-tuned 
model’s high knowledge of domain along with the structured 
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response features. The recent LLMs like GPT-4 and GPT-4o 
have proven to have improved contextual understanding, 
accuracy, and recall. These models can process larger context 
windows and are thus even more appropriate for regulatory 
document processing, risk assessments, and systematic 
literature reviews. However, one apparent limitation is that 
even these advanced LLMs could be plagued by performance 
degradation in processing extremely long documents6.

The goal of integrating AI, particularly large language 
models (LLMs), in toxicology is not to replace or supplement 
human decision-making, but to focus on their practical utility 
in tasks such as preparing dossiers, regulatory compliance 
documents, and analysis reports. LLMs have the potential to 
significantly streamline these processes, improving efficiency 
and accuracy2. For instance, under regulations like REACH, 
a company may currently rely on a large team to prepare a 
dossier. However, with a tailored LLM, the same task could 
be managed more efficiently with a smaller team, saving 
both human costs and valuable time. Similarly, regulatory 
agencies like the European Chemicals Agency (ECHA) could 
pull in LLMs to streamline the integration, compilation, and 
presentation of dossiers for tasks such as re-registration and 
compliance checks6.

An industry-specific LLM could streamline the dossier 
preparation process by automatically extracting and 
summarizing toxicity data from both structured and 
unstructured sources, standardizing formatting according 
to regulatory guidelines, and identifying key studies 
using weight-of-evidence approaches while flagging gaps 
for human review. This would significantly reduce the 
manpower required, allowing a small, specialized team 
to oversee the AI’s output. Similarly, regulatory agencies 
like ECHA could implement LLMs to automate the back-
end review and integration of submitted dossiers, greatly 
expediting regulatory processes and enhancing overall 
efficiency7. Nonetheless, at all stages, the decision-making 
process such as determining whether a study should be 
included in a risk assessment, remains human-led. The LLM 
role is to collate, compile, extract, and present data in the 
required format. We cannot deny the fact that toxicology 
is a highly specialized field where interdisciplinary expert 
judgment is crucial at every inflection or deflection point. 
Human decision making remains crucial at every juncture, 
while AI streamlines the structuring and formatting of 
information.

A major advancement would be the fine-tuning of LLM 
models tailored to specific regulatory frameworks – for 
example, separate models for EFSA (EU), REACH (EU), EPA 
(US). By developing exclusive AI models for different classes 
of compounds (e.g. pesticides, pharmaceuticals, industrial 
chemicals), risk assessment can be customized, context-
aware, and aligned with the latest compliance requirements. 
Such AI-driven automation can improve accuracy, reduce 
turnaround time, and enhance transparency, allowing human 
experts to focus on interpretation, critical thinking, and 

decision-making rather than tedious administrative tasks. 
LLMs trained on toxicological datasets risk leaking 

sensitive information through privacy attacks like 
membership inference and data extraction. Centralized 
training further increases the risk of data breaches and raises 
issues with GDPR. Federated Learning (FL) mitigates these 
risks by training models locally without exposing raw data, 
leveraging encryption and blockchain for secure aggregation. 
However, data heterogeneity and privacy-preservation trade-
offs can impact model accuracy.

Other key challenges include data bias in LLMs, which 
necessitates diverse datasets and bias-detection tools; 
lack of standardization, which can be addressed through 
harmonized ontologies; and the need for multidisciplinary 
collaboration among toxicologists, data scientists, and 
software engineers. Additionally, model interpretability and 
regulatory acceptability remain critical, requiring validation 
tests and uncertainty quantification.

Combining Federated Learning (FL) with differential 
privacy, homomorphic encryption, and blockchain-based 
auditing strengthens data security. Meanwhile, hybrid 
human-AI workflows enhance compliance and reliability in 
toxicological risk assessment3.

Investing in the development of fine-tuned LLMs is not a 
bad business idea at any point in time. A company developing 
a specialized LLM for dossier preparation and regulatory 
integration could market it to industries and regulatory 
agencies at one go. Just as statistical tools like SPSS are 
used for data analysis, an AI-powered tool tailored for risk 
assessment and regulatory compliance could become an 
essential part of toxicological workflows in the coming days.

Fine-tuning LLMs for toxicological risk assessment is 
much cheaper than traditional methods currently in use. 
Traditional toxicological assessments are highly labor-
intensive, requiring large teams and years to complete, 
with millions of dollars spent per chemical on testing and 
regulatory reporting. Conversely, fine-tuning an LLM is 
comparatively low in cost, ranging from $0.0004 to $0.03 
per 1000 tokens for training and $0.0016 to $0.12 per 1000 
tokens for usage, depending on the model and algorithm 
used. Fine-tuned LLMs enable automated data extraction, 
organization, and summarization, reducing manpower and 
time while maintaining regulatory compliance7.

The integration of large language models (LLMs) in 
toxicological risk assessment will streamline processes and 
enhance transparency. LLMs can automate tasks such as 
data mining, study identification, and dossier preparation 
from comprehensive datasets. These models minimize 
manual effort by extracting key data points, organizing 
them into regulatory formats, and identifying gaps for 
human input. Real-time data collection through AI systems 
ensures traceability and reduces the risk of manipulation, 
as raw experimental data can be directly integrated into 
assessments without human handling. AI can democratize 
access to toxicological data, enabling anonymized sharing 
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through public repositories. This fosters collaboration, 
supports informed decision-making, and makes vital 
information available to policymakers, researchers, and the 
public. Low-income countries and smaller organizations 
can leverage open-access AI tools for risk assessments 
with limited resources. While AI handles routine tasks, 
human experts remain central to decision-making, ensuring 
scientific rigor8,9.

In summary, LLMs offer a practical and scalable solution 
for automating routine tasks in toxicology (RA) while 
ensuring that expert decision-making remains intact with 
humans. The future of LLMs in this domain lies not in 
replacing human expertise but making our job easier. In 
the near future, hybrid AI-human workflows could become 
the gold standard, where AI handles data aggregation and 
pattern recognition, while experts apply their domain 
knowledge to validate conclusions and provide nuanced risk 
evaluations. This collaborative AI-assisted approach would 
optimize efficiency without compromising scientific rigor10,11.

ABBREVIATIONS
ACToR: Aggregated Computational Toxicology Resource (by 
US EPA), AI4NAMS: Artificial Intelligence for New Approach 
Methodologies in Safety Assessment, ChEMBL: Chemical 
Biology Database (by EMBL-EBI), COVID: coronavirus 
disease, DeepTox: Deep Learning for Toxicity Prediction, 
EPA: Environmental Protection Agency, GDPR: General Data 
Protection Regulation (EU), PubChem: Public Chemical 
Database (by NCBI), Tox21/ToxCast: Toxicology in the 21st 
Century/Toxicity Forecaster (US EPA and partners), REACH: 
Registration, Evaluation, Authorization, and Restriction of 
Chemicals (EU Regulation) 
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